Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Immunol ; 14: 1151888, 2023.
Article in English | MEDLINE | ID: covidwho-20242487

ABSTRACT

Immunogenicity continues to pose a challenge in the development of biotherapeutics like conventional therapeutic-proteins and monoclonal antibodies as well as emerging modalities such as gene-therapy components, gene editing, and CAR T cells. The approval of any therapeutic is based on a benefit-risk evaluation. Most biotherapeutics address serious medical conditions where the standard of care has a poor outcome. Consequently, even if immunogenicity limits the utility of the therapeutic in a sub-set of patients, the benefit-risk assessment skews in favor of approval. Some cases resulted in the discontinuation of biotherapeutics due to immunogenicity during drug development processes, This special issue presents a platform for review articles offering a critical assessment of accumulated knowledge as well as novel findings related to nonclinical risks that extend our understanding of the immunogenicity of biotherapeutics. Some of the studies in this collection leveraged assays and methodologies refined over decades to support more clinically relevant biological samples. Others have applied rapidly advancing methodologies in pathway-specific analyses to immunogenicity. Similarly, the reviews address urgent issues such as the rapidly emerging cell and gene therapies which hold immense promise but could have limited reach as a significant number of the patient population could potentially not benefit due to immunogenicity. In addition to summarizing the work presented in this special issue we have endeavored to identify areas where additional studies are required to understand the risks of immunogenicity and develop appropriate mitigation strategies.


Subject(s)
Antibodies, Monoclonal , Humans , Antibodies, Monoclonal/therapeutic use , Risk Assessment
2.
Front Immunol ; 14: 1151937, 2023.
Article in English | MEDLINE | ID: covidwho-2299189

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus does not only lead to pulmonary infection but can also infect other organs such as the gut, the kidney, or the liver. Recent studies confirmed that severe cases of COVID-19 are often associated with liver damage and liver failure, as well as the systemic upregulation of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNFα). However, the impact these immune mediators in the liver have on patient survival during SARS-CoV-2 infection is currently unknown. Here, by performing a post-mortem analysis of 45 patients that died from a SARS-CoV-2 infection, we find that an increased expression of TNFA in the liver is associated with elevated mortality. Using publicly available single-cell sequencing datasets, we determined that Kupffer cells and monocytes are the main sources of this TNFα production. Further analysis revealed that TNFα signaling led to the upregulation of pro-inflammatory genes that are associated with an unfavorable outcome. Moreover, high levels of TNFA in the liver were associated with lower levels of interferon alpha and interferon beta. Thus, TNFα signaling in the infected SARS-CoV-2 liver correlates with reduced interferon levels and overall survival time.


Subject(s)
COVID-19 , Tumor Necrosis Factor-alpha , Humans , COVID-19/immunology , Cytokines/immunology , Liver/immunology , Tumor Necrosis Factor-alpha/immunology
3.
Vaccines (Basel) ; 11(2)2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2235372

ABSTRACT

The introduction of anti-SARS-CoV-2 vaccines in late 2020 substantially changed the pandemic picture, inducing effective protection in the population. However, individual variability was observed with different levels of cellular response and neutralizing antibodies. We report data on the impact of age, gender, and 16 single nucleotide polymorphisms (SNPs) of cytokine genes on the anti-SARS-CoV-2 IgG titers measured 31 and 105 days after administration of the second dose of BNT162b2 vaccine to 122 healthy subjects from the health care staff of the Palermo University Hospital, Italy. The higher titers at 31 days were measured in the younger subjects and in subjects bearing T-positive genotypes of IL-1R1 rs2234650 or the GG homozygous genotype of IL-6 rs1800795 SNP. T-positive genotypes are also significantly more common in subjects with higher titers at day 105. In addition, in this group of subjects, the frequency of the CT genotype of IL-4 rs2243250 is higher among those vaccinated with higher titers. Moreover, these SNPs and TNFA rs1800629 are differently distributed in a group of subjects that were found infected by SARS-CoV-2 at day 105 of evaluation. Finally, subjects that were found to be infected by SARS-CoV-2 at day 105 were significantly older than the uninfected subjects. Taken together, these data seem to suggest that age and polymorphisms of key cytokines, which regulate inflammation and humoral immune response, might influence the magnitude of the antibody response to vaccination with BNT162B2, prompting speculation about the possible benefit of a genetic background-based assessment of a personalized approach to the anti-COVID vaccination schedule.

4.
Front Immunol ; 13: 1054962, 2022.
Article in English | MEDLINE | ID: covidwho-2224773

ABSTRACT

Inflammation is a central pathogenic feature of the acute respiratory distress syndrome (ARDS) in COVID-19. Previous pathologies such as diabetes, autoimmune or cardiovascular diseases become risk factors for the severe hyperinflammatory syndrome. A common feature among these risk factors is the subclinical presence of cellular stress, a finding that has gained attention after the discovery that BiP (GRP78), a master regulator of stress, participates in the SARS-CoV-2 recognition. Here, we show that BiP serum levels are higher in COVID-19 patients who present certain risk factors. Moreover, early during the infection, BiP levels predict severe pneumonia, supporting the use of BiP as a prognosis biomarker. Using a mouse model of pulmonary inflammation, we observed increased levels of cell surface BiP (cs-BiP) in leukocytes during inflammation. This corresponds with a higher number of neutrophiles, which show naturally high levels of cs-BiP, whereas alveolar macrophages show a higher than usual exposure of BiP in their cell surface. The modulation of cellular stress with the use of a clinically approved drug, 4-PBA, resulted in the amelioration of the lung hyperinflammatory response, supporting the anti-stress therapy as a valid therapeutic strategy for patients developing ARDS. Finally, we identified stress-modulated proteins that shed light into the mechanism underlying the cellular stress-inflammation network in lungs.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , SARS-CoV-2 , Inflammation , Endoplasmic Reticulum Chaperone BiP , Lung
5.
Nano Life ; : 1, 2022.
Article in English | Academic Search Complete | ID: covidwho-2053335

ABSTRACT

Dexamethasone is a synthetic corticosteroid that has historically been used to treat inflammation, such as from osteoarthritis, spinal cord injury and, more recently, COVID-19. The mechanism of action of dexamethasone is generally known to include attenuation of pro-inflammatory responses as well as upregulation of anti-inflammatory elements. A major issue with the use of dexamethasone is its delivery, as it is normally administered in large quantities via methods like bolus injection to attempt to maintain sufficient concentrations days or weeks after administration. In this review, we examine the mechanism of action of dexamethasone and its effects on three major cell types in the context of specific diseases: macrophages in the context of COVID, chondrocytes in the context of osteoarthritis, and astrocytes in the context of neuro-inflammatory disease. From this, we identify the key proinflammatory cytokines interleukin-1 (IL-1) and Tumor Necrosis Factor alpha (TNF-a) as universal effectors of inflammation that should be targeted alongside dexamethasone administration. Additionally, we review current extended release dosing mechanisms for dexamethasone to act over periods of weeks and months. We suggest that dual treatment of dexamethasone with IL-1 and/or TNF-a monoclonal antibodies will be an effective immediate treatment for inflammation, while the addition of fully developed dexamethasone extended release mechanisms will allow for effective long-term control of inflammatory disease. [ FROM AUTHOR] Copyright of Nano Life is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

6.
Int. j. morphol ; 39(4): 1123-1131, ago. 2021. ilus, tab
Article in English | WHO COVID, LILACS (Americas) | ID: covidwho-1863067

ABSTRACT

SUMMARY: Adriamycin (ADR) is an anthracycline antibiotic used for treatment of many types of cancer. However, its applications may damage to healthy tissues. Chloroquine (CLQ) is an anti-inflammatory agent used in treatment of many inflammation associated diseases such as malaria and rheumatoid arthritis. Moreover, it is used in the treatment of pneumonia caused by COVID-19. The aim of this study is to determine possible therapeutic effects of Chloroquine on Adriamycin-induced testicular toxicity in rats. We investigated the effect of CLQ on testicular injury caused by ADR. Rats were divided into four groups: Control, ADR, CLQ, ADR+CLQ. After administrations, animals were sacrificed, and testis tissues were extracted from the animals for the further examinations. Histopathological changes in testis tissues were evaluated and TNF-α and IL-6 immunostaining were performed to determine the expression levels of these cytokines. TUNEL method were used for evaluation of apoptotic index. Moreover, serum testosterone levels were measured by ELISA assay. We observed that ADR group showed histopathological deterioration when compared to the Control group and CLQ treatment ameliorated this damage induced by Adriamycin.An increase in TNF-α and IL-6 immunoreactivities and in the number of apoptotic cells and a decrease in serum testosterone levels were determined in the ADR group compared to the Control and CLQ group. Furthermore, our examinations showed an improvement in testicular tissue in ADR+CLQ group in terms of these parameters when compared to the ADR group. We suggest that CLQ can be used as a protective agent to reduce the toxic effects of Adriamycin as a result of its anti-inflammatory and anti-apoptotic properties.


RESUMEN: La adriamicina (ADR) es un antibiótico de antraciclina que se usa para el tratamiento de muchos tipos de cáncer. Sin embargo, sus aplicaciones pueden dañar los tejidos sanos. La cloroquina (CLQ) es un agente antiinflamatorio que se utiliza en el tratamiento de enfermedades asociadas a la inflamación, tal como la malaria y la artritis reumatoide. También se utiliza en el tratamiento de la neumonía causada por COVID-19. El objetivo de este estudio fue determinar los posibles efectos terapéuticos de la cloroquina sobre la toxicidad testicular inducida por adriamicina en ratas. Investigamos el efecto de CLQ sobre la lesión testicular causada por ADR. Las ratas se dividieron en cuatro grupos: Control, ADR, CLQ, ADR + CLQ. Después de las administraciones, se sacrificaron los animales y se extrajeron los testículos de los animales para los exámenes adicionales. Se evaluaron los cambios histopatológicos en los tejidos testiculares y se realizó la inmunotinción de TNF-α e IL-6 para determinar los niveles de expresión de estas citocinas. Se utilizó el método TUNEL para la evaluación del índice apoptótico. Además, los niveles de testosterona en suero se midieron mediante un ensayo ELISA. El grupo ADR mostró un deterioro histopatológico en comparación con el grupo Control y observamos que el tratamiento con CLQ mejoró el daño inducido por Adriamicina. Un aumento en las inmunorreactividades de TNF-α e IL-6 y en el número de células apoptóticas además de una disminución en los niveles séricos de testosterona se determinaron en el grupo de ADR en comparación con el grupo de control y CLQ. Además, nuestros exámenes mostraron una mejora en el tejido testicular en el grupo ADR + CLQ en términos de estos parámetros en comparación con el grupo ADR. Sugerimos que CLQ se puede utilizar como agente protector para reducir los efectos tóxicos de la Adriamicina, gracias a sus propiedades antiinflamatorias y antiapoptóticas.


Subject(s)
Animals , Male , Rats , Testicular Diseases/chemically induced , Testicular Diseases/drug therapy , Doxorubicin/adverse effects , Chloroquine/administration & dosage , Enzyme-Linked Immunosorbent Assay , Immunohistochemistry , Interleukin-6 , Tumor Necrosis Factor-alpha , Rats, Wistar , Apoptosis/drug effects , In Situ Nick-End Labeling , Inflammation , Antibiotics, Antineoplastic/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL